comp34312

Bias Variance Decomposition

Noise

Ey|x[yEy|x[y]]2

Bias

[ED[f(x)]Ey|x[y]]2

Variance

ED[f(x)ED(f(x))]2

Bias Variance Decomposition for Ensembles

Ambiguity of the Ensemble

1mmfi(x)f¯(x)

Empirical Risk Minimisation


Linear Regression

β=X(XX)1y

GD

tlog(|x0|ϵ)log1k

GD in Over-parameterised Linear Regression

because of over-parameterisation GD converges to a global minima nearest to the origin i.e. over-parameterisation induces an effect called "implicit bias" or "algorithmic regularisation"

Objective Function

minβRd12yXβ22

Loss function

R^(β)=12yXβ22 X:=X(XX)1Rd×nXX=I

NOTE: